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Abstract—This article presents the application of parallel
computing techniques using a Graphics Processing Unit (GPU)
in order to improve the computational efficiency of a ray
tracing algorithm. Three different GPU implementations of
the ray tracing algorithm are presented. The experimental
evaluation of the proposed methods demonstrates that a
significant reduction of the computing time can be obtained
when compared with a CPU implementation, making a step
forward to the real-time calculation of scene brightness on
desktop computers.
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I. INTRODUCTION

A scene consist of a collection of objects and light sources
seen through a camera. Each object in a scene is a geometric
primitive, a simple geometric shape like a polygon, a sphere
or a bicubic surface. Additionally, the surface of each object
has material properties, textures, etc. All global illumination
techniques try to solve the problem of finding a set of images
photorealistic for a given scene. These algorithms usually
differ in how they handle the lighting of the scene.

Several kind of global illumination algorithms can be
identified, based on the different light elements considered.
Radiosity [11], ray tracing [25] and multipass methods (like
RADIANCE [24] and photon mapping [13]) produce realis-
tic images in diverse scenarios with several kind of surfaces.
Radiosity works well in scenes with Lambertian surfaces,
ray tracing produces good images in scenes with specular
surfaces and the multipass methods are more versatile based
on the mixture of methodologies used in them. Nowadays
the development of a global illumination algorithm that
generates at least twenty images per second -that is, in real-
time- is a great challenge for the computer graphics research
community.

Ray tracing algorithm calculates the brightness of each
pixel of an image by throwing rays and evaluating their
bounces in the objects of the scene. Each bounce produce
one or more rays that impact in other objects and so on.
The color of the pixel is composed of the color of the first
object considered and the color added with each bounce.
This algorithm was one of the first steps into photorealistic
rendering, and its success is due to its capacity to generate
good quality images using a simple code.

Graphics Processing Units (GPUs) are devices designed
originally for graphics processing, lightening the workload
on the CPU in applications such as video games. Thus,
the CPU can be used to perform other computations while
most of the graphic processing calculations are performed
on the graphic device. GPUs are currently very powerful
platforms, provided for tens or hundreds of cores with
acceptable clock frequencies (500-600MHz). Additionally,
the computing power of GPUs is enhanced due to its
intrinsically parallel architecture.

Initially, the progress in the design of GPUs was not
associated with an advance in the software capabilities until
2006, when NVIDIA released CUDA (Compute Unified
Device Architecture) [7]. CUDA is an architecture for
general purpose parallel computing that allows the use of
parallel processing in these devices to solve a wide variety of
problems more efficiently than it is possible to solve with a
CPU. The ray tracing algorithm is highly parallelizable since
the calculation of lighting in each pixel is an independent
process, and therefore is very suitable for GPUs.

This article studies the implementation of the ray tracing
algorithm implemented in GPU for speeding up the com-
putation time. Three parallel versions were developed, in
order to exploit different characteristics of the ray tracing
algorithm and GPU architecture. An analysis of the per-
formance was conducted, measuring the number of frames
that could be calculated per second. The preliminary results
show that large improvements can be obtained (up to 13×)
using a GPU instead of using a standard multicore CPU,
such as the ones used in this analysis. The GPU hardware is
also convenient in price, for instance the GPUs used in this
paper are currently cheaper than a standard multicore CPU

The content of the article is structured as follows. The
next section describes the main features of modern GPUs
and CUDA architecture. Then, Section III introduces the ray
tracing algorithm. Section IV describes the three different
GPU implementations of ray tracing presented in this article.
The experimental evaluation of the proposed methods is
reported in Section V, where the results are also analyzed.
Finally, Section VI presents the conclusions of this research
and formulates the main lines of future work.

XXIX International Conference of the Chilean Computer Science Society

1522-4902/10 $26.00 © 2010 IEEE

DOI 10.1109/SCCC.2010.42

11

Authorized licensed use limited to: Carleton University. Downloaded on September 15,2020 at 17:41:47 UTC from IEEE Xplore.  Restrictions apply. 



II. GRAPHIC PROCESSING UNITS

Based on the facilities provided for CUDA [7] for GPU
programming, GPUs can be viewed as a set of shared
memory multicore processors. Moreover, GPUs are usually
considered many-cores processors due to the large number
of small cores that contain. GPUs follow the single-program
multiple-data (SPMD) parallel programming paradigm in
which cores execute the same program on multiple parts of
the data, but do not have to be executing the same instruction
at the same time [8]. The number of threads that currently
GPU can execute in parallel is in the order of hundreds and is
expected to continue increasing rapidly, which makes these
devices a powerful and low cost platform for implementing
parallel algorithms.

CUDA [15] consists of a stack of software layers includ-
ing: a hardware driver, a C language application program-
ming interface and the CUDA driver that is dedicated to
transfer data between the GPU and CPU. It is available for
all NVIDIA’s GeForce 8 series GPUs and superiors. It is
compatible with operatiing systems Linux of 32/64 bits and
Windows XP and superiors of 32/64 bits.

The CUDA architecture is built around a scalable mul-
tiprocessor array. Each multiprocessor on GPUs based on
G80 architecture consists of eight scalar processors as well
as additional units like a multithreading instruction unit and
a shared memory chip. When a part of an application runs
many times on different data, it can be isolated in a function,
called kernel function, to be executed on the device through
many different threads. For this purpose, the kernel function
is compiled using the device instruction set and the resulting
program is transferred to the device.

When a kernel function is called, a large number of
threads are generated on the GPU. The group of all generated
threads is called a grid, which is partitioned in many blocks.
Each block groups threads that are executed concurrently on
a single multiprocessor of the GPU. There is no fixed order
of execution between blocks. If there are enough multipro-
cessors available on the GPU, the blocks are executed in
parallel. Otherwise, a time-sharing strategy is used.

Threads can access data across multiple memory spaces
during their execution. GPUs based on G80 architecture have
six different memory spaces: registers, local memory, shared
block memory, global memory, constant memory and texture
memory. Table I presents the main features of the different
GPU memory spaces that are briefly commented next.

Registers, that are located on the chip, are the fastest
memory on the GPU and are only accessible by each thread.
In addition to this, each thread has its own local memory
but is one of the slowest memories on the GPU, because
it is located in the device memory and is not cached. Both
memory spaces are entirely managed by the compiler. Each
block has a shared memory space that is almost as fast as
registers and could be accessed by any thread of the block.

The shared memory is located on the chip and its lifetime
is equal to the lifetime of the block.

Table I
FEATURES OF THE DIFFERENT GPU MEMORY SPACES.

Memory Scope Lifetime Size Speed
Registers Thread Kernel Very small Very fast

Local Thread Kernel Small Slow
Shared Block Kernel Very small Very fast
Global Grid Application Big Slow

Constant Grid Application Very small Fast
Texture Grid Application Very small Fast

All the threads executing on the GPU have access to the
same global memory that is located on the GPU. The global
memory is one of the slowest memories on the GPU and
is not cached. On the other hand, constant memory is fast
although for the device is read-only. It is located in the
device memory even though it is cached. In fact, constant
memory can be seen more as a cache of the global memory
than a different memory space. Finally, the texture memory
has the same characteristics that constant memory.

Figure 1 presents the CUDA architecture diagram, in-
cluding the six different memory spaces. The figure shows
local memory close to the threads and private to each
thread. However, local memory is really located in the device
memory as the global memory.

Figure 1. CUDA memory model.

III. RAY TRACING ALGORITHM

The ray casting algorithm [3] proposed by A. Appel is
based on tracing rays from the observer’s viewpoint to a
view plane between the observer and the scene. The ray
tracing algorithm [25] extends the idea of ray casting by
making the process recursive, generating new rays when the
a ray intersects an object in its way. Each new ray starts in
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the intersection point and follow a direction based on the
physical laws of refraction and reflection.

Ray tracing achieves a great realism in the images
generated even though its implementation is quite simple.
However, the simplifications used in the lighting model do
not allow generating caustics caused by light rays reflected
or refracted by curved surfaces. Similarly, the calculation
of the color component of “ambient light” [14], that is a
simplification in the lighting calculation, makes the algo-
rithm unable to produce some effects like “color bleeding”
(phenomenon caused by light reflection making the color of
a surface spread over the surfaces surrounding).

The ray tracing algorithm works as follows. For each
pixel of the image, a ray is traced from the observer’s
viewpoint to the pixel (called primary ray). If a ray does
not intersect an object in its way, then the pixel is painted
with the background color of the scene. On the contrary, if
the ray intersects with an object, the shadows, refraction and
reflection are calculated. Figure 2 shows the rays generation
of ray tracing in a scene with a single light source from a
single primary ray.

Figure 2. Rays generated from a single primary ray.

To calculate the shadows, a “shadow” ray (L1) is traced
from the intersection point of the primary ray to each exist-
ing light source on the scene. If any of these rays intersects
with an object, the amount of light that passes through the
object is calculated, depending on the transparency of the
object. If the object intersected is opaque (as the smallest
object in the Figure 2), the intersection point of the primary
ray is under the shadow of the object, so the light source
is eliminated. If the object intersected has some degree
of transparency (as happens with the largest object in the
Figure 2), the illumination contribution of the light source
is reduced.

When the object has specular reflection, a ray (R1, called
reflection ray) is reflected from the primary ray at the point
of intersection with respect to the normal (N1). This ray

enables to get the intensity of the light that reaches the
intersection point of the primary ray due to the phenomenon
of reflection.

When the object is transparent, a ray (T1, called refraction
ray) is traced through the object. This ray enables to get the
intensity of the light that reaches the intersection point of
the primary ray due to the phenomenon of refraction.

Each one of the reflection and refraction rays when
intersects with an object, can generate new “shadows”,
reflection and/or refraction rays. Therefore, the steps for the
calculation of refraction and reflection effects should be done
recursively. For example, the same steps used to calculate
the intensity of the light provided for the primary ray should
be used to calculate the intensity of the light provided for
R1. Thus, a ray tree is built for each primary ray, as shown
in Figure 3.

Figure 3. Ray tree resulting from the Figure 2.

A. Acceleration structures: uniform spatial subdivision

Two families of strategies can be used to improve the per-
formance of ray tracing algorithm; one family of strategies
reduces the number of rays and the other one optimizes the
number of intersection checks performed. The spatial divi-
sion of the scene helps to reduce the number of intersection
checks, since it guarantees that the entire list of objects of
the scene should not be checked for each ray.

The spatial division method have the advantage of check-
ing for possible intersections only with objects belonging to
regions traversed by the ray. As a result, the space division
method reduces the amount of unnecessary calculations,
depending on the object distribution in the scene.

In the uniform space division method the scene is divided
into a set of uniform regions. Each region has a list of all
the objects that it contains, either in whole or in part. This
technique requires a preprocessing stage to create a data
structure for storing the regions occupied by each object in
the scene.

This uniform spatial subdivision strategy can effectively
accelerate the calculation of the intersections despite being
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simple. While there are other alternatives, like the kd-tree
[23], the uniform spatial subdivision improves the perfor-
mance of ray tracing, it is easy to implement and it does
not add extra issues to the algorithm; therefore, it is a
spatial acceleration structure that can be considered in a
GPU implementation of the ray tracing algorithm.

B. Related work

The ray tracing algorithm has a high computational cost
specially with the geometrical models used in most 3D
applications, therefore until recently it was not suitable for
real-time applications. However, nowadays, some new works
have achieved real-time ray tracing implementations over
CPU architectures, such as the Quake Wars game engine
[21] implemented using openRT [18]. A demo of the engine
showed in August 2008 runs between 20 - 35 fps with
an image resolution of 1024 by 720 pixels on a Caneland
system that includes four Dunnington CPUs, each with six
cores.

On the other hand, the application of the computational
resources delivered by modern GPUs to ray tracing has re-
sulted in a number of implementations that allows rendering
scenes in reasonable times. Researchers have introduced sev-
eral techniques to speed up the construction of acceleration
structures and the traversal of rays through an acceleration
structure. The list of the related works includes those done
by Horn et al. [12], Popov et al. [20], Parket et al. [19], Aila
and Laine [1] and the 3D engine developed by researchers
of the Alexandra Institute [4].

The Horn et al. work is based on the use of Boundary
Volume Hierarchy (BVH), which is not covered in our
work. Meanwhile, the proposal of Aila and Lane is im-
plemented using a combination of Brook [6] and Direct3D
[9], involving a different conceptual abstraction of the GPU
model. Parket et al. [19] have proposed a general framework
to develop ray tracing algorithms, but their work focuses
on developing a flexible and adaptable framework than
on the performance of the resulting algorithm. For these
reasons, none of the three previous works were considered
for the development of our proposal. On the other hand, the
algorithm implemented by the Alexandra Institute is based
on the traditional ray tracing algorithm whereas the work
of Popov et al. implements a kd-tree spatial acceleration
structure, therefore both works are closely related with our
approach.

A good survey of the state of the art in the ray tracing
techniques can be found in the works of Parker et al. [19],
and McGuire and Luebke [16].

IV. OUR PROPOSAL

The ray tracing algorithm is inherently suitable for par-
allelization with SPMD techniques, since the calculation of
lighting in each pixel is an independent process. This feature
makes possible its implementation on GPU cards, using a

separate thread to calculate each ray. Three different versions
of the ray tracing algorithm were developed in order to
exploit different characteristics of the algorithm and the
GPU architecture. The versions were implemented following
an incremental approach, incorporating in each version a
considerable improvement over the previous one.

This section describes the main characteristics of the
different versions implemented. First, for all versions imple-
mented, a description is introduced of some general features.
Later, the differences between all versions implemented are
detailed.

All versions were implemented using the C language
and CUDA (version 2.3) to manage the GPU. The general
structure of the different versions of the implemented ray
tracing algorithm is presented in the Figure 4. It has five
different steps that are discussed below.

Figure 4. Structure of the ray tracing algorithm implemented in CUDA.

In the first step of the algorithm, the data of the scene is
loaded from a text file. The file format is based on Wavefront
OBJ (version 3.0) [17]. It makes possible to define the
elements of the scene (e.g. vertices, points, lines, polygons,
curves, etc.) and the materials of the elements. Also at
this stage, a configuration file is loaded, which contains
parameters required to execute the algorithm such as image
resolution, division size of the acceleration grid, maximum
number of ray bounces, etc.

In the second step it is built a spatial acceleration structure
corresponding to the uniform space subdivision, because of
the simplicity of its construction and its traversal. The grid
construction algorithm has been optimized, so that for each
object in the scene, it is associated with (in grid coordinates)
an axis-aligned box that surrounds it. Then, candidate spatial
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regions that overlap with the generated box are obtained.
For each candidate region, it is tested the region-object
overlapping, and if it happens, the object is added to the
region.

The third stage involves the data transfer from the memory
space of the CPU to the GPU memory. The transferred data
are: the view plane, the camera, the image resolution, the list
of triangles and its normals, the light sources, the regions of
the grid for spatial subdivision and the material properties
of each object.

After copying the data to the GPU, the kernel that
calculates the primary rays is invoked. The data required
to calculate the primary rays are the view plane, the camera
and the image resolution.

The primary rays are the input for the calculation of each
pixel color, which is the core of the ray tracing algorithm.
The data required to calculate the color of each pixel are
the list of triangles and its normals, the light sources, the
regions of the grid for spatial subdivision and the material
properties of each object.

The kernel that calculates the color of each pixel is
invoked following a division in patches (group of pixels)
of the image to render. The image is divided uniformly,
which each patch has the same number of pixels. Each patch
corresponds directly to a block of threads in CUDA, in order
to process each division of the image by a different block.
Moreover, since each pixel of the image is processed by a
different thread, the number of threads per block is equal
to the number of pixels contained in each division. For this
reason, the division is completely established when fixing
the number of threads per block and the image resolution.
For example, if the image resolution is 640×480 pixels and
the block size is equal to 16 × 8 threads, the image must
necessarily be divided into 40× 60 patches.

Each thrown ray traverse the spatial acceleration structure,
following the reflections and refractions in the objects. The
ray tracing algorithm implemented has only one type of
element, the triangle. Thus, the intersection algorithm is
simple, requiring only a few arithmetic operations.

A relevant aspect is that the ray tracing algorithm is recur-
sive, and current GPUs do not support recursion. As a con-
sequence, the algorithm has to be implemented iteratively.
There are two alternatives to achieve this, implementing a
stack to store the recursion tree or simplifying the tree by
making it degenerate into a list. The first alternative was
ruled out because each thread must have its own stack and
the size of the local memory is very limited. The second
alternative requires as a precondition that the scene has no
objects that reflect and transmit light at the same time. This
was the approach followed in our implementation since the
limitation imposed on the scene is acceptable.

Finally, after calculating the color for each pixel, the data
generated in the GPU is copied to the CPU to be displayed
on the screen.

The differences between the versions are discussed in the
next subsections.

A. RT(GPU) version

The first version of ray tracing algorithm (RT(GPU)) is
a GPU-analogue to the CPU implementation. In RT(GPU),
all the data is stored in global memory.

B. RT(GPU-ml) version

Regarding the GPU architecture, and particularly the
importance of the correct use of the memory levels, this
version (RT(GPU-ml)) uses the different memory levels
of GPU accessible through CUDA. In particular, texture and
constant memories are used, ensuring an improvement in the
performance.

The values that are more frequently used by the algorithm,
such as the list of triangles or the boxes of the grid for spatial
subdivision, must be stored in a memory level with fast read
access. For this reason, the list of triangles and its normals,
the light sources, the boxes of the grid for spatial subdivision
and the list of material properties of the objects are copied to
the texture memory, since these data is accessed frequently
and do not need updating. Other data such as the view plane,
the camera and the image resolution is stored in the constant
memory. Reading data from these types of memory is much
faster than reading from global memory.

C. RT(GPU-ii) version

The third version (RT(GPU-ii)) improves the proce-
dure for calculating the ray-triangle intersection using the
barycentric coordinates method [2]. This method verifies that
the ray intersects the plane containing the triangle and then
by a change of coordinates verifies that the intersection point
is within the triangle boundaries.

V. EXPERIMENTAL ANALYSIS

In this section, we present the test cases and hardware
platforms used to evaluate the different versions imple-
mented of the ray tracing algorithm. Then, we describe
in detail the various experiments conducted to validate the
proposal.

In addition to the GPU versions of the ray tracing
algorithm described in Section IV, a CPU implementation
of ray tracing RT(CPU-ii) was developed to evaluate the
comparative performance versus the GPU versions.

A. Test cases

In a first instance, we studied the existing strategies for
measuring the quality of the images generated. The survey
did not obtain any comprehensive strategy. The choice of
the method for measuring the quality of the image depends
heavily on the objective of the study. Avcibas et al. [5]
and Dirik et al. [10] present good surveys of strategies
and discuss their limitations, but none is applicable for the
purposes of this study.
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In addition to this, there are no standardized test cases
or benchmarks that could be used to evaluate the different
implementations of the ray tracing implemented in this
work. For this reason, a set of images were designed trying
to cover several aspects of the image generation process, in
order to contribute to measure different characteristics of the
implemented algorithms. The designed test set of images is
divided into three different groups. The first group consists
of images for evaluating the effect of the distribution of the
objects in the scene. The test cases of the second group
consists of images for evaluating the impact of the number
of triangles in the scene. Although there are no benchmarks,
some images have been used by the research community
(such as the Bunny from Stanford University). Therefore,
the third group includes some of those scenes and images
that have been used in studies similar to this.

1) Test cases with different object distribution: All scenes
have the same number of triangles but have a different
distribution in the scene. Table II presents the main features
of the test cases considered.

2) Test cases with different number of primitives: All im-
ages in this group are exactly the same, but were discretized
using a different number of primitives. Table III presents the
main features of the test cases considered.

3) Test cases from similar studies: All images are taken
from similar studies or are images commonly used by the
research community. Table IV presents the main features of
the test cases considered.

Table II
TEST CASES WITH DIFFERENT DISTRIBUTION IN THE SCENE.

Scene name # Objects # Lights # Triangles Figure
Dist I 9 1 10,338 5(a)
Dist II 9 1 10,338 5(b)
Dist III 9 1 10,338 5(c)

(a) (b)

(c)

Figure 5. Scenes with different spatial distribution of the objects.

Table III
TEST CASES WITH DIFFERENT NUMBER OF PRIMITIVES.

Scene name # Objects # Lights # Triangles Figure
Pri I 2 2 194 6(a)
Pri II 2 2 274 N/S
Pri III 2 2 348 N/S
Pri IV 2 2 482 N/S
Pri V 2 2 606 6(b)

(a) (b)

Figure 6. Scenes with a different number of primitives.

Table IV
TEST CASES USED FOR COMPARING WITH OTHER ray tracing

IMPLEMENTATIONS.

Scene name # Objects # Lights # Triangles Figure
Alexandra 14 1 236 7(a)

Buddha 1 1 100,000 7(b)
Dragon 1 1 100,000 7(c)
Bunny 1 1 69,698 7(d)

(a) (b)

(c) (d)

Figure 7. Scenes used for comparing with other ray tracing implementa-
tions.

B. Hardware platform

Several hardware platforms were employed to evaluate
the implemented algorithms. Each platform consists of a PC
Core 2 Duo with a GPU of the NVIDIA GeForce series. The
main details of the hardware platforms used are presented
in the Table V. All the PCs were running the Windows
operating system.
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Table V
HARDWARE PLATFORMS USED FOR EXPERIMENTAL ANALYSIS.

GPU GPU memory CPU RAM memory
9500M GS 512 MB T7500 2.20GHz 4GB DDR2 667 MHz
9600M GT 512 MB P8400 2.26GHz 4GB DDR2 667 MHz
GTX 260 896 MB E7500 2.93GHz 4GB DDR2 667 MHz

The Table VI provides more details of each one of the
GPUs used during the evaluation.

Table VI
GPUS USED FOR EXPERIMENTAL ANALYSIS.

GPU Multi Cores Clock Shader Memory
processors (MHz) clock (MHz) clock (MHz)

9500M GS 4 32 475 950 400
9600M GT 4 32 500 1250 400

GTX260 27 216 576 1242 999

C. Experimental results

Most of the experiments were conducted with an image
resolution of 640 by 480 pixels. However, in the case of the
comparison with algorithms implemented by other authors
and our work, it was essential to use other resolutions.
For comparing with the implementation of the Alexandra
Institute, was used an image resolution of 800 by 600 pixels.
The resolution was determined by their implementation of
the ray tracing algorithm as it could not be modified. For
comparison purposes with Popov et al. results [20], was used
an image resolution of 1024 by 1024 pixels. The resolution
was determined from the experiments described in the article
by Popov et al., since the authors worked with that fixed
resolution.

Experiments conducted during the evaluation confirmed
that the choice of the grid size can increase the performance
of image generation. As a first approximation we considered
the value suggested by Thrane and Simonsen [22], which
indicates that the resolution should be 3 3

√
N boxes along

the shortest axis, where N is the number of triangles in the
scene. After several tests, it was found that this division is
not always the best, and that a better value for the grid
size could be found between 3

√
N and 3 3

√
N along the

shortest axis. For each of the images, it must be determined
empirically the optimal grid size that obtains the better
performance within the range of values.

1) Evaluation of the different GPU versions implemented:
The performance comparison between different versions of
the algorithm implemented on GPU was made using the test
cases Pri I, Pri II, Pri III, Pri IV and Pri V. This evaluation
has two stages. In the first stage, the optimal grid size for
the considered test cases is determined, while in the second
stage, each one of the GPU versions are executed for each
of the test cases using the optimal grid size, founded in the
previous stage.

The RT(GPU-ii) version was used to determine the
optimal grid size for each test case. The results obtained

executing in the PC with a GTX260 are summarized in
Table VII. The table shows the number of frames per second
(fps) that can be computed for each of the images. We can
conclude from these results that the optimal grid size for
all test cases considered is obtained by halving each axis
(2× 2× 2).

Table VII
FPS OF RT(GPU-ii) VERSION FOR DIFFERENT TEST CASES.

Scene 1x1x1 2x2x2 4x4x4 6x6x6 10x10x10 15x15x15
Pri I 18.7 36.7 32.7 29.7 27.3 24.7
Pri II 13.9 27.6 25.4 23.3 21.5 20.1
Pri III 11.3 24.5 22.8 20.9 19.2 18.0
Pri IV 8.4 18.5 18.0 16.5 15.9 15.1
Pri V 6.7 16.6 15.5 14.6 13.8 13.5

Once the optimal grid size for each of the test cases was
found, all the versions implemented on GPU are executed
for the same test cases. Table VIII presents the performance
obtained by the different GPU versions in the PC with a
GTX260, measured in frames per second. The results show
that the performance improves with the version, and that
RT(GPU-ii) achieved the best performance.

Table VIII
FPS COMPARISON BETWEEN THE DIFFERENT GPU VERSIONS.

Scene Optimal RT(GPU) RT(GPU-ml) RT(GPU-ii)
grid size (fps) (fps) (fps)

Pri I 2x2x2 5.8 26.2 36.7
Pri II 2x2x2 5.1 20.2 27.6
Pri III 2x2x2 4.9 18.2 24.5
Pri IV 2x2x2 4.3 14.1 18.5
Pri V 2x2x2 3.9 12.6 16.6

The obtained results shown the importance of exploiting
the different memory levels of GPU. In RT(GPU) version
all the data is stored in the global memory, while in
RT(GPU-ml) version most of the data is allocated in the
texture and the constant memories. For the test cases con-
sidered, the use of the different memory levels of the GPU
enables to improve the performance due to the reduction in
memory access time, making the algorithm on average three
and a half times faster than the algorithm that does not use
it.

On the other hand, RT(GPU-ii) version improves the
algorithm of ray-triangle intersection, with an algorithm that
requires less arithmetic operations, thereby reducing the time
needed to generate images. From the results, it is possible
to notice that the improved intersection algorithm helps
to make RT(GPU-ii) generate images 30% faster than
RT(GPU-ml) version.

Finally, it can be seen in Table VII as well as in Table
VIII, that the increase in the number of triangles in a scene,
increases the time required for generating each image and
therefore reduces the fps.

2) Comparative study with other ray tracing implementa-
tions: First, it was made a test to compare our proposal with
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the ray tracing implemented in GPU by Alexandra Institute
[4] considering a scene provided with its implementation.
The results obtained in the PC with a 9600M GT graphics
card, showed that RT(GPU-ii) reach 13.0 fps, while the
implementation of the Alexandra Institute obtained 11.7 fps.

Figure 8(a) shows the rendering generated by the imple-
mentation of the Alexandra Institute and Figure 8(b) shows
the rendering generated by our implementation for the same
scene. It should be emphasized that our implementation
renders generic scenes while the Alexandra Institute im-
plementation is specially designed to produce images of
a single type of scene, managing efficiently the memory
space and reducing the number of memory access for that
type of scenes. Another difference in the implementations is
that Alexandra Institute implementation considers the light
sources as objects of the scene, while this was not considered
in our implementation. In the images generated it can be
seen subtle differences, such as the background color that
could not be properly reproduced for the test case. Also there
is a noticeable difference in the specular brightness of the
sphere motivated by the incorrect reproduction of material
used in the Alexandra image. On the other hand, in the
image generated by our implementation it is best seen the
reflection of objects near the sphere on its surface. Based on
an analysis of the images, it could be concluded that there
are no significant differences between the two images.

(a) (b)

Figure 8. Render of the image Alexandra with Alexandra Institute
implementation (left) and with our implementation (right).

Then, a test was conducted to compare our proposal with a
ray tracing implemented in GPU developed by Popov et al.
[20] that used the kd-tree structure as spatial acceleration
method. In their work, the rendering of the scene Bunny
is presented as well as the time required for the image
generation. The scene Bunny considered in our experiments
was built from the observation of the rendering presented in
the work of Popov et al. The scene could not be exactly
the same because of the limitations of the construction
method used and the omission in the original article of some
relevant aspects of the scene. For example, the number of
light sources is the same but the position is not identical
and the material properties of the main object could not be
accurately reproduced, since the article does not provide this
information. The GPU used by Popov et al. is a NVIDIA
GeForce 8800 GTX with 112 cores. The GTX260 is the best

suited GPU from the ones available for our experiments but
has superior features than the one used by Popov et al. Figure
9(a) shows the render presented by Popov et al. and Figure
9(b) shows the render of the Bunny scene generated with
our implementation.

(a) (b)

Figure 9. Render of the image Bunny with Popov et al. [20] implementation
(left) and with our implementation (right).

The performance of our implementation of the ray tracing
under the conditions described above is 6. 1 fps, while
the performance of the work of Popov et al. is 5. 9 fps.
The performance of both implementations for the test case
considered is very similar. The results obtained show that
the ray tracing implemented is competitive with other ray
tracing algorithms implemented in GPU.

3) Comparative study between different platforms: The
comparative study of performance between the different
platforms consisted in the execution of the RT(GPU-ii)
version to the test cases Dragon, Buddha and Alexandra. In
each of the platforms, the algorithm is executed for each
of the test cases using several grid sizes, determining the
optimal grid size for each case and platform.

Tables IX, X and XI show the results obtained for the
equipment 9500M GS, 9600M GT and GTX260, respec-
tively.

Table IX
FPS OF RT(GPU-ii) VERSION IN A PC WITH A 9500M GS GRAPHICS

CARD.

Dragon Buddha Alexandra
Grid size fps Grid size fps Grid size fps
20x20x20 1.4 20x20x20 1.3 1x1x1 4.6
46x46x46 2.3 46x46x46 2.4 3x3x3 11.5
92x92x92 2.8 92x92x92 2.5 6x6x6 15.6

138x138x138 2.0 138x138x138 2.1 10x10x10 13.1
180x180x180 1.6 180x180x180 1.7 15x15x15 12.3
230x230x230 1.3 230x230x230 1.3 30x30x30 9.1

The results obtained suggest that the optimal grid size
(92×92×92 in Dragon, and Buddha images, and 6×6×6
in Alexandra image) for the test cases considered is the
same regardless of the platform used. On the other hand,
the experiments confirmed that the generation of images by
the ray tracing algorithm implemented is faster, when the
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Table X
FPS OF RT(GPU-ii) VERSION IN A PC WITH A 9600M GT GRAPHICS

CARD.

Dragon Buddha Alexandra
Grid size fps Grid size fps Grid size fps
20x20x20 1.7 20x20x20 1.4 1x1x1 5.9
46x46x46 3.3 46x46x46 2.8 3x3x3 14.0
92x92x92 3.4 92x92x92 3.1 6x6x6 20.0

138x138x138 2.6 138x138x138 2.6 10x10x10 18.4
180x180x180 2.0 180x180x180 2.1 15x15x15 17.5
230x230x230 1.6 230x230x230 1.7 30x30x30 12.8

Table XI
FPS OF RT(GPU-ii) VERSION IN A PC WITH A GTX260 GRAPHICS

CARD.

Dragon Buddha Alexandra
Grid size fps Grid size fps Grid size fps
20x20x20 5.0 20x20x20 4.9 1x1x1 28.0
46x46x46 12.2 46x46x46 9.8 3x3x3 49.3
92x92x92 16.8 92x92x92 12.4 6x6x6 71.2

138x138x138 14.2 138x138x138 11.4 10x10x10 67.6
180x180x180 11.4 180x180x180 10.3 15x15x15 62.5
230x230x230 9.3 230x230x230 8.4 30x30x30 49.4

GPU has a greater number of cores. In addition to this,
the results also show that the algorithm implemented can
automatically scale with the number of cores of the GPU.
This is an important property that arises as a consequence
of the CUDA programming model which helps to achieve
it very easily.

4) Comparative study between CPU and GPU implemen-
tations: The experiments for comparing the performance
between the implementations for CPU and GPU used the
test cases Dist I, Dist II, Dist III and Bunny. The eval-
uation consisted in the execution of RT(GPU-ii), the
most efficient version on GPU, and RT(CPU-ii), the CPU
version of the ray tracing algorithm, in the PC with a
GTX260 graphics card. Table XII presents the fps obtained
by RT(GPU-ii) and RT(CPU-ii) versions and the
acceleration (defined as fps of GPU implementation

fps of CPU implementation
) achieved

when using the GPU.

Table XII
FPS OF THE CPU AND GPU IMPLEMENTATIONS.

Scene Grid size CPU (fps) GPU (fps) Acceleration
Dist I 50x50x50 1.4 17.2 12.29
Dist II 50x50x50 1.5 20.1 13.40
Dist III 50x50x50 1.6 21.1 13.19
Bunny 80x80x80 4.2 23.8 5.67

The results obtained for the test cases Dist I, Dist II,
Dist III and Bunny show that the GPU implementation
produces images faster than the CPU implementation, and
therefore achieves a higher number of frames generated per
second. In particular, the GPU implementation is more than
11 times faster on average than the CPU implementation for
the four test cases considered in this study.

5) Evaluation of the effect of the object distribution in
the scene: The test cases Dist I, Dist II and Dist III were
designed for detecting a possible weakness in the spatial
acceleration structure chosen, when working with scenes in
which objects are not evenly distributed. We assumed that
in the case of Dist III, which has all the items concentrated
in the center of the scene, would reach less fps than in the
cases Dist I and Dist II, which are more evenly distributed.
However, the results obtained (presented in Table XII) show
the opposite. One possible explanation for this behavior
in such scenes, is that when the objects are more evenly
distributed in the scene, they cast more shadows (as it can
be seen in Figure 5). Since the calculation of the shadows is
computationally expensive, this cost counteracts the benefit
gained with uniform distribution of objects in the scene.

VI. CONCLUSIONS AND FUTURE WORK

This work has presented an initial study on applying
GPU computing in order to speed up the execution of the
ray tracing algorithm. Three version of ray tracing were
implemented in GPU using CUDA and were evaluated on
different platforms using several images.

The experimental analysis showed that the GPU imple-
mentation increased significantly the number of frames that
could be generated per second over the traditional CPU
implementation (the RT(GPU-ii) version obtained an ac-
celeration of up to 13×). These results show the importance
of making a good use of the different levels of memory on
current GPUs.

We can also conclude that the performance achieved by
our proposal (RT(GPU-ii) version) is competitive with the
state of the art in real-time ray tracing implementations on
GPU, such as the one developed by the Alexandra Institute
and the proposal of Popov et al. In addition to this, our
proposal showed a good scalability on the platforms used
in this study. This property is very important because the
GPUs improve its power at a vertiginous rate, which predicts
that our implementation of ray tracing will achieve a better
performance in new GPUs.

The main line for current and future work consists in
evaluating the use of a different spatial acceleration struc-
ture, being the kd-trees the structure that best seems to suit.
Also, it is important, for graphical purposes, the proposal of
a technique to cover completely the ray tree. In addition to
this, extending this work to a multi-GPU scenery or a hybrid
multicore-GPU approach should be addressed in order to
attain real-time calculation of the frames in more complex
scenes.
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